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Google Translate

Google Ubersetzer

Englisch Deutsch Franzdsisch Englisch - erkannt - "'...

Bayern Munich on Thursday suggested Mario Gitze's %
playing future at the German champions may remain

on the bench, even though he showed his desire to

earn a starting spot after turning down a possible to
Liverpool.

The Germany international, who scored the winning
goal in the 2014 World Cup final, has failed to carve
out a starting spot since joining Bayern from rivals
Borussia Dortmund in 2013 and has been earmarked
as a major summer target for Jirgen Klopp.

Sofortiibersetzung deaktivieren O

Deutsch Framzdsisch Englisch -

Bayern Minchen am Donnerstag vorgeschlagen, Mario
Gotze des Spiel Zukunft bei den Deutschen Meister auf
der Bank bleiben kann, obwohl er seinen Wunsch,
Zeigte einen Startplatz nach dem Ausdrehen eine
mdgliche nach Liverpool zu verdienen.

Die Deutschland Nationalspieler , der den Siegtreffer in
der WM 2014 Finale erzielte, hat es versaumt, aus
Bayern einen Startplatz zu schnitzen Rivalen Borussia
Dortmund im Jahr 2013 seit dem Beitritt und hat als
Haupt Sommer Ziel fur Jargen Klopp bestimmt worden.
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Machine Translation

= Automatically translate text s in source language
Into text t in target language.

s | asks and solutions we will elaborate on:

How should we model the translation problem using
machine learning methods?

How can we learn such a model?

What is a good model?
» How can we measure the quality of a translation?
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Machine Translation—Classical View

Interlingua

Conceptual
Generation

Conceptual
Analysis

Semantic Semantic

Shallow Structure Structure Semantic
Semantic Generation
Analysis

Syntactic

Parsi -
arsing Generation

Morphological
Analysis

Morphological
Generation

Source Language Text Target Language Text
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Statistical Machine Translation

= Problem formulation:
Given sentence in source language S,
Find best sentence in target language T

argmaxy P(T|S)
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s Generally, a model of some latent structure A is included
(e.g. syntactic parse tree, word alignment. More on that
later):

argmaxt ), 4 P(T,A|S)
Sometimes, this is simplified to argmaxy 5 P(T, A|S)




Statistical Machine Translation

s Often, Bayes' rule is used to split the likelihood of target
sentence given source sentence into

(inverse) translation model
and (target) language model.
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argmaxy P(T|S) = argmaxt P(S|T)P(T)




Statistical Machine Translation

= You learned a variety of language models P(T) last
week.

= The two components can be identified with a

adequacy model P(S|T) which (mainly) determines
how much of the information of T is translated to S,

fluency model P(T) which determines aspects such
clarity and naturalness of the target sentence.
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Lexical Translation Models
and Word Alignment

= Simple translation models model the translation
process as a sequence of word-to-word translations
P(s|t) with possible reorderings of words in the
target sentence.

= Reordering describes a word-to-word alignment a,
e.g.
The i-th word ¢; in T aligns with the a;-th word s, In
S.

S = The house is small

T = Das Haus ist klein
a=(1,2,3,4)
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Word Alignments

= Vectorial representation a can express one-to-many
relations.

= One word s; can be aligned to several words in T.

( .
S = Anyway, the house is small

/\ON

T = Wie auch immer, klein ist das Haus
a=(1,1,154,2,3)
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= Some words in S or T might not have any aligned
words.




Lexical Translation Models

= A simple statistical translation model can model
P(T|S) as follows:

P(T|S) = ZP(T,aLS’)
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and

P(T,alS) = P(alS) P(T|a,S)

¢ P(A|S) can be very simple.




IBM Models

= Statistical alignment models that are also simple
translation models.

= Very basic. Proposed in 1993.

= Translate sentence S = s, ... Sk Into another
language T = t; ... t;.

= Or: Align sentence S = s; ... sy With sentence
T — tl tl'
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IBM Models

= P(T|S) =3, P(T,alS)
= P(T,alS) = P(alS) P(T|a,S)

= P(a|S) 1_[ P(tak|sk)
k
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= Models differ in choice of reordering model P(alS).




IBM Model 1

s |IBM Model 1 models P(alS) as O
length(a) g

P(als) = P(ength@]$) | | Pacals) :

_|

k S

P(a;|S) is uniform over all source words and a
special NULL word.

Length of a is also modeled as uniform distribution
over some length interval.




Example Decoding

s P(T|S) =),P(T,alS)
» [terate over all alignments. Example:

( .
S = Anyway, the house is small

/\ON

T = Wie auch immer, klein ist das Haus
a=(1,1,1,54223)

. J

P(T,alS) = P(alS) Hp(tk\sak)
k
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P(T,alS)
= P(a|S) - P(Wie |anyway) - P(auch|anyway)
- P(immer|anyway) - P(klein|small) - P(ist|is)
- P(das|the) - P(haus|house)




Phrase Based Translation

s Generally better to use phrases instead of single
word translations.

s Here, phrase just means a sequence of words
(substrings), without any linguistic meaning.

m Better suited for translation tasks
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S = | Anyway, | |the house ||is || small

\

T = | Wie auch immer, | |klein |]ist| |das Haus

a=(1432)




Phrase-Based Model

s Simple phrase based model:

letS =35 ..5, and T =t, ...t,,, be phrase
sequences.

» P(S,alT) ~II;Z1 P(Sq,|t;) d(starty, —endg, )
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Start position End position of

Reordering / distance of phrase 5, phrase s, __

score. E.qg.
d(x) = a*1l




Phrase-Based Model

s This phrase-based model (Koen, 2003) can be
defined by:

All phrase translation probabilities known to the
model are stored in a phrase table.

A language model of the target language.
A reordering scoring function.

Potentially also a penalty function that penalizes long

target sentences.
m

P(T,al$)~ | | P(5a|8) - d(start,,

— enidzii_ 1) + Py, (T) - W(len(T))
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Decoding of Phrase-Based Models

S =] Anyway, | the house is small

\

T = |Wie auch immer,

= Find the best derivation out of exponentially many. O
= Decoding as search. -
-

s Example: =
&

@D

o}

" ) 5

=1

@)

S




Decoding of Phrase-Based Models

S =] Anyway, | the house is small

\

T = |Wie auch immer,

s Find the best derivation out of exponentially many. O
= Decoding as search. -
-

s Example: =
&

@D

o}

" ) 5

=1

@)

S




Decoding of Phrase-Based Models

S =] Anyway, | the house is |small

NI

T = | Wie auch immer, | | klein

s Find the best derivation out of exponentially many. O
= Decoding as search. -
-

s Example: =
&

@D

o}

" ) 5

=1

@)

S

m ...and soon




Decoding as Search

s There are several possible translation options. O
o
N
Q
Anyway, the house is small j5
Wie auch immer der Haus ist klein 2
Sowieso die Gebaude enspricht [Gtt @
jedenfalls das Bank winzig =
uberhaupt des Publikum o
@)
das Haus ist klein 8
des Hauses Ist nicht der Rede wert
die Kammer
Im Haus




Decoding as Search

= Expand search nodes
P: Probability (score / neg. cost) of current state
E: aligned words in English sentence
D: last expanded word in German
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Decoding as Search

= Expand search nodes
P: Probability (score / neg. cost) of current state
E: aligned words in English sentence
D: last expanded word in German

: jedenfalls,

*kkk

D: das haus
E: *th**
P: 0.2
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Decoding as Search

= Expand search nodes S
= P: Probability (score / neg. cost) of current state =
E.g. P ~ P(jedenfalls|anyway) - d(0) - P(klein|small) - =
. . Q
d(3) - P;,,,(jedenfalls klein) Q
o
5
D: jedenfalls, D: das haus 3
E: a**** E: ath** o
P:0.2 Score: 0.15 <
D: das D: das
E ***** E *t *% E t
P:0.01 P:0.1
D: das haus D: klein
E: *th** E: a***s
P: 0.02 P:0.01




Decoding as Search

= Expand search nodes S

= P: Probability (score / neg. cost) of current state ;

E.g. P ~ P(jedenfalls|anyway) - d(0) - P(klein|small) - =

. . Q

d(3) - P;,,,(jedenfalls klein) Q

_|

S

. ; 0

[E) ﬁgf*nfalls, E :g}i*haus géldsé ;‘Jg:‘tt der é

P: 0.2 P: 0.15 E gtg'ls Q
D: D: das D: das D: ist D: Kklein
E: Frrrx E: *t*** E: *t* E: athi* E: athis
P:0 P:0.01 P:0.1 P:0.02 P:0.011

D: das haus D: klein D: klein D: lutt

E: *th** E: a***s E: ath*s E: athis
P: 0.02 P:0.01 P: 0.0001 P:0.001




Decoding as Search

s Several search heuristics are possible

Beam search: stack decoding

» Maintain priority queue for each prefix substring of
source sentence.

x Discard unlikely search states

A* search

» Visit hypotheses in order of score(state) = state.P +
h(state), where h(state) is an estimate of future log-
probabilities.

» Estimate future log-probabilities by using best phrase
translations for remaining words and discarding
reordering costs.
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Learning Translation Models

= Fine, now we have seen very simple translation
models (such as IBM1) as well as more useful ones
(phrase-based models)

= We have also seen how we can find a good
decoding of such models, that is, translations.
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= However, so far we assumed that model
parameters, such as phrase translation probabilities
P(s|t), are given, e.g. as phrase tables.

= Now we will focus on more interesting things:
Learning.




Learning of Phrase-Based Models

= Translation models are learned from parallel
corpora, e.g.

Europarl: official translations by the European
parliament. Translations for EU member languages.

Hansards: Canadian parliament. French/English
Hongkong Hansards: Chinese/English
News articles

Less popular: translation of literary texts.
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Training Data for Learning

= As a first step, parallel corpora have to be sentence
aligned.

= Many publicly available corpora are already
sentence aligned (e.g. europarl)

= Otherwise, a set of heuristics are available.
Based on length of sentences
Based on letter N-grams
lexically
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Word Alignment

s Phrase-based approaches have to estimate
probabilities P(5|t) for translating phrase t to s.

= In order to do so, phrases need to be aligned in a
parallel corpus.
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= Phrase alignments can be generated from word
alignments.

s IBM Models are not well suited for translation tasks
but are used a lot for word alignments.




IBM Model 1

= Alignment decisions are independent
s P(t|s) Is categorical (multinomial)

= It follows (length(a) is omitted because length of
sentence S is fixed)

P(T,alS) = P(alS) P(T|a,S)

1
=T r1 Up(tklsak)

and  P(TIS) ~ Ya Tk P(te|sa,)
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IBM Model 1 — Decoding

= Find best word alignment

a* = argmax,P(T,alS)

= argmax, 1_[ P(tk |Sak)
k
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= Independence of alignments:
a, = argmaxakP(tk|sak)




IBM Model 1 — Learning

s How do we learn the lexical translation
probabllities?

= If alignments were known, estimation would only
consist of counting:

count(ist ~ is
P(ist|is) = ( )

count(is)
= Unfortunately, alignments are not known.
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= Instead, alignments and probabilities both have to
be estimated using the EM algorithm.




IBM Model 1 — Learning

EM Algorithm
= Initialize random translation probabilities P(t|s)

m [terate:

Estimate alignments based on current estimates of
P(t|s).

P(alS,T) =

P(T,alS)  P(T,als)
P(T|S) X, P(T,a'lS)

Estimate ML probabilities by computing the expected
counts

E[count(s, )] = X5y Za P(alS, T) TiY, 8(sq, = t1)

and compute P(t|s) = E]E[E:;unrf’fgsg]
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IBM Models 2,3

s IBM Models 2 to 5 introduce non-uniform
distributions for P(a|T).

= Model 2 introduces a position dependent reordering
model.
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= Model 3 introduces a fertility model that predicts the
number of words a word t Is aligned to in S.

= Models 4 and 5 introduce more complex reordering
models.




IBM Models

= IBM models implemented in GIZA++, a toolbox
which is widely used for word alignments.

= Practical issue: IBM models can only model many-
to-one relations.
In practice alignments in both directions are

computed and then the union and intersection
between both alignments are computed.
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= Other alignment models also possible.
E.g. HMM model




Phrase-Based Models

s For phrase based models, we need phrase pairs.

s Based on word alignments, phrase pairs can be
easily computed for training data.

s Phrases are rectangles, word alignments are points
Anyway, the house is small
we |@)
ach | @
immer, .J
klein ’ [ [.
ist L.]
das O
Haus | J'.
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Phrase-Based Models

= Construction of phrases from word alignment.

= Given a pair of aligned sentences S and T with
alignment ~, such that s, ~ty., iff k;-th word in

source sentence is aligned with k,-th word in target
sentence.

= Then (s;, ...s;,, t;, ... t;,) is a phrase pair if
Sk,~ ty, foratleastone k; € [iy,j;] and k, € [iy, J,]
Sk, *ty, forallky & [iy,j;] and k, € [iy, ;]
Sk, * ty, forallky € [iy, /1] and k; € [iy, j,]

39
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Phrase Generation

Wie

auch

Immer,

klein

ISt

das

Haus

Anyway, the

house

IS

small

agn
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Phrase Generation

Anyway, the house is small

| :>7<[
Wie ) /\
auch .
Immer, .
klein O
ISt .
das O
Haus .
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Phrase Generation

Anyway, the house is small

O

— %

Wie . 93'7
(@)

S

auch . Q
3

immer, . =]
"/ =

S

<

klein @
ISt @
das @
Haus @




Phrase Generation

Anyway, the house is small

O

— %

Wie . 93'7
(@)

S

auch . Q
3

immer, . =]
"/ =

S

<

klein | O
ISt . I

G J
das O I

Haus




Phrase Generation

Anyway, the house is small

O

— %

Wie . 93'7
(@)

S

auch . Q
3

immer, . =]
"/ =

S

<

klein | O
ISt . I
G _A
das O I
Haus | .
\ | y. J




Phrase-Based Model — Learning

= We can now compute phrase alignments for
parallel corpora.

= We still have to learn phrase translation
probabillities.
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= Luckily, this is very simple if we have phrase
alignments:

count(5,t)  count(5,t)
count(t) )5 count(s,t)

Just count! P(S|t) =




Tree (Syntax)-Based Models

= So far, we did neither use nor model any

grammatical / structural / syntactical information.

= But could certainly be helpful:
E.g. In German:  hat ... gekautft
In English has bought ...

Phrase-based model: potentially hundreds of
different phrases

hat Schuhe gekauft  hat Hosen gekauft  hat Brotchen gekauft

has bought shoes has bought pants has bought rolls
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Syntax-based Models

m Better:
Rule like

X — hatY gekauft

should be translated to
X — has boughtY
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m Possible realization:
Parse source sentence.

Convert source parse tree to parse tree for target
language according to grammatical rules.

Generate target sentence.




Synchronous PCFGs

= Simultaneous generation of 2 sentences from 2
context free languages

= Definition:
Finite set of non-terminals {N;}, start symbol N,
Terminals in source language {s;} and in target language

{ti}

Rules {N; — (a, B, ~)}, where a sequence of source
terminals and non-terminals, f sequence of target
terminals and non-terminals, ~ alignment between non-
terminals in  and £.

Probabilities for rules P(N; - {(a, 5, ~))
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Synchronous PCFGs

s Example sentence pair (English / Mandarin) with O
phrase pairs 2
Q
S
However (@ (] 1 ] =
¥ ) g
the D
sky 3
o
remained =
=
clear o
under (8
the <
strong
north
wind
BT
23f8s 223237
sE&F S&Etg
£ S i
g &




Synchronous PCFGs

= Example (Alignment denoted by indices)

NP — ]]TENPH / [}'T'm.\_PH
NPB — JJgNNg / JJgNNg
NPB — NPByllg / JJgNPBy

DT — the / ¢

JJ — strong [/ PR

JJ — north / 4k

NN — wind / [A|

50
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Synchronous PCFGs: Parameter
Estimation

= Rules have to be predefined
= Word alignment has to be known

= Learn with EM-Algorithm: Iterate

For each rule: compute expected counts in training
data with current parameter estimates. (with inside-
outside algorithm (Forward-Backward for PCFGSs))

Estimate new parameters using counts

51
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Synchronous PCFGs: Decoding

m For each sentence in source language:

Find most likely parse tree using only the source
language part of the rules.

Infer target language part with help of alignment

(1) (2)
/ \ / \ / \
DT NPB DT NPB DT NPB
|/ N\ I/ N\ l / \
the JJ NPB the .J.J NPB £ NPB
[ /\ L /\ / \ l
strong JJ NN strong JJ NN NN
l J l l [ 1 howls

north wind north wind il [Al

north wind

52
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Synchronous PCFGs

= Advantage: Elegant handling of reordering of
subphrases

= Disadvantage: Rules have to be known in advance.

But:
Definition of synchronous rules are hard

Especially for languages with very different
grammars

= Solution: Synchronous PCFGs based on phrases
with automatically generated rules!

53
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Hierarchical Phrase Translations

s Rules are automatically extracted from phrase
pairs.

= Example:

X —However , XpXp /B oR . {8 .
X —under the strong north wind /4t A, FEOE

X —the sky remained clear /FC 7 ¥ 14 1Hil

)
o
2)
—
Q
>
!
-
D
Q
@D
_|
D
O
=
>
=
o
Q
<

54




Hierarchical Phrase Translations

=2gie

\ Although X
. N

However
it A rER

<
// \,\‘ orth wind  hows .

the skyv remained clear ROTUN ARG NOwis

/ l \\ K7 RS+ EE

, sk still extremely limpid
under the strong north wind g R

e
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Hierarchical Phrase Translations

= Algorithm for generating rules:
For all phrase pairs (s;, ...s;,, t
X - (51'1 . Sj,t

t; ) add a rule

iy e

i) e ti)

Forallrulesr =X - (a, B):

If (si, ...sj,, ti, .- t;,) is @ phrase pair, such that

a = a;S;, ..Sj,az and B = pit; ...t; B, then
X = (a1 Xz, f1XkB2)

Is a rule and k i1s an index not used in r

Repeat step 2 until no new rules can be added
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= In practice some pruning mechanism has to be
applied in order to reduce number of rules.




Rule Generation: Example

m Start;

Word and phrase
alignments

m After 2 iterations:

30
duonianlai

de

youhao

hezuo

Xm
duonianlai

de

Xg

~
o)
=
= &
§ 58 o u _ B
v O <))
= > 2 o 9
E § 8 & 8 &8 5

S7
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String-to-Tree models

= An alternative approach ist to use syntactic
Information only for one of the languages.

= In general, string-to-tree methods are models that
use syntax information such as parse trees for the
target language.

= With this approach we can use linguistic
knowledge!
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String-to-Tree model: GHKM

= One example is the GHKM formalism (also
considered tree-to-string model)

Learn rules of the form
Syntax — String

VP(AUX(does), RB(not), x;:VB) — ne x; pas
Also expressible as:

VP — ne x;pas /doesnot VB
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Training of String-to-Tree Model

= Assume that we have source sentence s, a parse
tree for target sentence m which yields target
sentence t and a word alignment a.

= Create rule set from this training example.

TOP

S-TOP PUNC.

v Alexander Nikitin X
1 . .

A \ \ \ 1 i \ |
it is the case of Alexander Nikitin |
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Rule Generation for GHKM

= Example triple («, s, a) can be visualized as directed
graph G consisting of nodes and edges of = and the
alignment edges corresponding to a.
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NP

5
14,79
|

/ | |
cD NNS VBP NNS VBG IN NNP .
1 2 2 3 78 4 4 5 9
29 19 19 .r-z,u 159 19 1-9 14,?-9 12
7 people |nc|ude astronauts  coming  from France .
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Rule Generation for GHKM

= Nodes are labeled with its span
and complement span

The span of a node n is defined
by the indices of the first and last
word Iin s that are reachable from
n.

The complement span of n is the
union of the spans of all nodes
n’in G that are neither
descendants nor ancestors of n.

Nodes of ¢ whose spans and
complement spans are non-
overlapping form the frontier set
FcaG
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Rule Generation for GHKM

= Frontier nodes are depicted in
gray in the example graph.

= Frontier nodes are important for
choosing rules of the form

S(xo: NP,xl: VP,xz: ) — X, X1, X2
Only frontier nodes are allowed

as variables in the left hand side
of rules.

NP(X(): DT, X1- CD, X9 NNS) -

Xo, X1, X, 1S NOT allowed.

Instead,

NP(xy: DT,CD(7), NNS(people)) —
-xO;-.l'|I rlu.,_
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Rule Generation for GHKM

s Such rules are said to be induced
by G.
= Minimal rules defined over G

cannot be decomposed into
simpler rules.

= Minimal rule set for example

g rap h : DT CcD NNS VBP NNS VBG IN NNP B
(a) S(zo:NP, 21:VP, 22:.) — x0, 71, 22 . - . - . - .--

7 people include astronauts coming from Franc

(b) NP(zq:DT, CD(7), NNS(people)) — xq,7 ) [g P 'R - (] - . E E
(¢) DT(these) — X i wis KR |) T

(d) VP(zo:VBP, 1:NP) — x0, 1 E E 2] oG . . 2
(e) VBP(include) — } 7145

(f) NP(zo:NP, x1:VP) — x4, [I'], T0

(g) NP(xp:NNS) — xq

(h) NNS(astronauts) — ==, i1

(i) VP(VBG(coming), PP(IN(from), z0:NP)) — 3#: [, =0

(j) NP(zo:NNP) — z¢

(k) NNP(France) — i[5

( .() —.
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Rule Generation for GHKM

s Composed rules result from composition of two or
more rules. E.g. rules (b) and (c) compose into:

NP(DT(these), CD(7), NNS(people)) — X, 7T ),

= Minimal rules for a graph G are unique iff there are
no unaligned words in s.

= Otherwise, many minimal derivations of ¢ are
possible.
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Rule Generation for GHKM

= Several derivations due to unaligned source word#] [
. . . o
. Derivation forest. =
=
Swaiw Q
— — QD
NP(x0-DT CD(7), NNS(people)) VPx0-VBP.x1NP) | | () (@)
= x0.7 M - x0.x1 =i (9]
o] [P0 ] [ it
>
v o
NP(x0:NP, x1:VP) NP(x0:NP. x1:VP) NP(x0:NP. x1:VP) 6
- x1. 1. x0 - xl.x0 - x1.x0 Q
<
VP(VBG(coming), VP(VBG{coming), | | VP(VBG(coming). NP(x0:NNS) | | NP(x0-NNS) || NP(x0-NNS)
PP(IN(from). x0:NP))| | PP(IN(from). x0:NP)) | | PP(IN(from), x0:NP)) | | = x0 > f.x0 || =>=x0
2> XA.x0 = ¥H.x0 2> KA. x0. 1Y

% |

NNS(astronauts) NINS(astronauts)

NP(x0:NNP) || NP(x0:NNP) || NP(x0:INNP)
= x0 = x0 - x0, {1}
NNP(France) NNP(France)

> kM. 1 > k[

(b)

> FHi. A

= [P0, &




Rule Generation for GHKM

s Algorithm:

= Maintain a table to store OR-nodes which can
uniquely be defined with its span [ — u and its
syntactic category c (e.g. NP).
1. Assign spans und complement spans to each node
In the graph, determine frontier set F.

2. Extract minimal rule for each n € F.
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Rule Generation for GHKM

= Algorithm:
3. For each node n in the frontier set (top-down
traversal):

Explore all tree fragments rooted at n by maintaining
open and closed queues q,of rules.

At each step, take smallest rule from g,and try for
each of its variables to discover new rules by means
of composition until threshold on rule size is
reached.

Add new rules to OR table.
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Probability Estimation for GHKM

= The OR-table contains a representation that
encodes valid derivations.

= Next, we have to estimate probabilites
P(rhs(r)|lhs(r)) for rules r of the form
lhs(r) — rhs(r).
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= Note that, according to Bayes’ rule,
argmax; P(t|s) = argmaxP(t)P(s|t) =
argmax;P(t) )., P(s|m)P(m|t)

s P(m|t) is probability for certain parse tree. Not
covered here (Will be covered later)




Probability Estimation for GHKM

= We want to estimate P(s|m) by estimating rule
probabilites. P(s|m) = Yg[l,.eg P(rhs(r)|lhs(r))
@ are derivations that are constructible from G.

0 =ry,°...°r, Where r; are the rules that constitute the
derivation.

= If we assume that all derivations are equally likely,
estimation is done by counting

count(r)
P —
(rhs(r)|lhs(r)) e oo COUNE()

s Otherwise, we have to estimate derivation
probabilities P(0|G).
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Probability Estimation for GHKM

= If we would know P(60|G), we could weight the

counts P(rhs(r)|lhs(r)) = e ,)ZiZE(G)Pz(Zlc,;)Q P(6|6)
r:lhs(r’)=lhs(r e

= Use EM to estimate those the adjusted
P(rhs(r)|lhs(r)).
m lterate:
[I,cg P(rhs(r)|lhs(r))
Yo' llcq P(rhs(r)|lhs(r))

. Lo.req P(01G)
P(rhs(r)|lhs(r)) = Y ths(r)=ths(r) 2o:eo P(O16)

PO|G) =
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General Decoding for Translation Models

= We have seen several machine translation models O
that each solve the same problem. 2

Q

= Find the best target sentence T. ‘%
. ‘ _ P(S|T)P(T) S

s Using Bayes' rule, P(T|S) = P C5) §
S

= Find most likely sentence T given S
argmax;P(T|S) = argmaxP(S|T)P(T)

= argmaxr 2 P(S,A|T) P(T)
A

where A denotes some structure, such as
alignment, phrase-based derivation, or PCFG
derivation.




General Decoding

s Often, instead of finding the best target sentence,
one resorts to finding only the best derivation
argmaxy 4P(S,A|T)P(T)

m For convenience, we omit derivations from the
notation in the next slides.

= In general, scoring of derivations and decoding can
be realized using log-linear models.

E.g. we could generalize the phrase-based scoring
function.

argmaxy 4 B.(S|T)*" Py, (T)Mm W(len(T))AW d(A)*4
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Decoding—Linear Models

s A, A, Ay ,Aq are weights for each individual term of
the scoring function.

= Taking the logarithm yields

argmaxr 4 A log P-(S|T) + Aynlog Py (T) +
Aw log W (len(T)) + 24 log d(A)
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Ar \T / log B-(SIT)
Alm lOg le(T)
score(S,T,A) =| Ay log W (len(T))

AA/ \ logd(A) /




Decoding—Linear Models

= The weights A can be learned by supervised
learning methods such as CRFs (cf. lecture on
Basic Models) that maximize the score for the best
translation.

More specialized models were also proposed e.qg.
[Och,2003]
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Features for Linear Models

= In modern translation systems, a large variety of
features is generated and used in such linear
models, e.g.

the direct translation probability log P(T|S) or
log P(T, A|S) or either without the log,

scores P(S|T) computed by several different
translation models such as phrase-based and
syntax-based,

scores based on additional lexical likelihoods, e.g. by
using ,real’ lexicons,
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= We will learn about some additional features today!




Evaluation

= How can we evaluate the performance of one
translation model?

= How can we compare different translation models?

s Good evaluation metrics of translation models not
obvious

(Expert) human translations serve as ground truth /
reference translations.

There will generally be several correct (human)
translations of the same text.

Some reference translations might not even be
agreed upon by all experts.
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Evaluation

= Evaluation of translation can be separated into two
parts. Humans can give their verdict on each of
those.

Fluency

» Evaluates the fluency, naturalness, or style of the
translated target text.

Adequacy

*» Evaluates the informativeness of the translated text.
That is, how much of the information of the source
sentence is transported to the translation
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Evaluation

m | his scenario demands humans to evaluate each
translated sentence.

Very time consuming!

Evaluate feedback for new methods or
parameter settings becomes bottleneck for
development of machine translation system.

= Instead, one should resort to automatically
evaluable performance metrics.
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Evaluation — BLEU

s Several such performance metrics were proposed,
e.g. BLEU, NIST, TER, ROUGE, ...

= The most commonly used perfomance metric is the
BLEU score (Bilingual Evaluation Understudy).

It allows to compare to several reference translations
at once.

It compares n-grams of reference translations and
candidate translations (machine translation).
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BLEU — Example

s Score and compare two candidate translations

Cand 1:| It is a guide to action||whicH |ensures that the miIitary||aIwast obeys|the|command4 |of the party

Cand 2:| It is E)I insuretroopshearing activity guidebook(that{party|direct

Ref 1: [Itis a guide to action|that[ensures that the military| will forever heed [Party|command

Ref 2: he guiding principle which [guarantees the military forces always being under the command |[of the Party
Ref 3: practical guide for army alwaysheeddirections of
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Example taken from: Daniel Jurafsky & James H. Martin.
Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition.




BLEU

s BLEU uses a modified n-gram precision metric.

= A candidate sentence is evaluated by a weighted
average of the number of n-gram overlaps.

= Let cand denote a candidate translation and cand(s)
the translation of sentence s. Let ref be a reference
translation and ref(s) its translation of s.
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BLEU

= We define the clipped counts for n-grams as:

Forsomen € {1,..,N (4)}:

For all distinct n-grams «,, in candidate sentence
cand(s) let:
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c(a,, cand(s))
= min{count(a,, cand(s)), r?gfx{count(an, ref(s))}}

2s Ly ¢(an,cand(s))

s Zan count(a,,cand(s))

m score(n,cand) =




BLEU

= With normal counts, the following candidate
translation would have a score of

score(1,cand) = =

Candidate: .. the the the the the
Reference 1: . cat IS on . mat

Reference 1: there is a cat on . mat
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BLEU

s BLEU(cand) =
BP exp (% >N_, wy log(score(n, cand)))

BP penalizes translations that are too short.
Let c=len(candidate corpus).
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and r=effective length of reference corpus
» Effective length: for each candidate sentence, find
reference sentence that is closest in length. Sum
length of all those reference sentences.
1 if c>r
e(1=7/¢)  otherwise
w, can be used to give more weight to certain n.

BP={




BLEU — Example

Cand 1:| It is a guide to action”whicH |ensures that the military||alway4 obeys|the|command4 |of the party

Cand 2:| It is @ insuretroopshearing activity guidebookthat|party|direct

Ref 1:| It is a guide to action||that ensures that the miIitary|wiII |forever |heed|Party|command

Ref 2: he guiding principle which|guarantees the military forces always being under the command|of the Party|
Ref 3: practical guide for army alwaysheeddirections of

s c('the’,cand1(s)) = min{ 3, max{1,4,4}} = 3
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Xs Zay C(@pcand(s)) 17
25 Zay, count(ay,cand(s)) 18

m score(2,candl) = ?

s score(l,candl) =

7
m score(3,candl) = 116
m BP = 1,BLEU(candl) =

exp G (—=0.024 — 0.230 — 0.359 — 0.574)) = 0.74

, score(4,candl) = 115




BLEU vs. Human Evaluation

= At WMT15 (EMNLP Workshop on Statistical
Machine Translation 2015), human evaluation was
compared to BLEU scores.

s 137 researchers contributed

XoTuTe CBETALWErocs B Fancy a glow-in-the-dark ice

to th e an n Otatl O n Cam p al g n . TEMHOTE MOPOXeHOro? cream? A British entrepreneur has

BpuTaHckuia npegnpuHuMarens created the world's first glow-in-

co3gan nepsoe B Mupe the-dark ice cream - using jellyfish.

They had to decide for binary ez,
rankings such as i —

You do want ice cream luminous in the darkness?

translation A > translation B'. o.cocnmenenes-o

You want to glowing in the dark ice cream?

€ - C3D C3D 3D G20 D - CD

You want the luminous in the dark ice cream?

[ ost B Rani1@ | Rank2 @ ] Ranka @ ] ranks @ ] aanks @ B worst ]

Want luminous in the dark ice cream?

Want to llluminate the Dark with Ice Cream?
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BLEU vs. Human Evaluation

= They computed general scores based on those
ranking decisions and compared them to BLEU

SCOres.

s As aresult, it has to be said the BLEU alone is not
a very reliable evaluation metric for translation

tasks.

Russian-English

HUMAN
6T
ONLINE-G
Ll
4+
¢ ONLINE-B
PRO%'['_I

FRULEERL-MIT-FAC __ AFRL-MIT-PB
ONLINE-A

& AFRL-MIT-H
® LIMSI-NCODE

-
UEDIN-SYNTAX * UEDIN-JHU

® USAAR-GACHA

L]
USAAR-GACHA2

. BLEU

I f f f f f
20 22 24 26 28 30

English-German

HUMAN
4 UEDIN-SYNTAX o MONTREAL
-
PROMT-RULE = » ONLINE-A
& ONLINE-B
* KIT-LIMSI
ol . = TEDIN-THU
: ONLINE-C CIMS » T
-
ONLINE-E DEKL
-
UDS-S5ANT
-4+ * rmnois
-
IMS
-6 T

| B]_IE.U

12 14 16 18 20 22 24 126
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Neural Network-Based Translation Models

= Recently, neural network based translation models
gained a lot of interest and showed very good
empirical performance

= Many deep learning architectures are possible for
tackling translation tasks.

= We focus here on Encoder-Decoder approaches
that have shown promising results and have strong
relations to NN-based continuous language models.
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Encoder-Decoder Approaches

= Idea: Learn intermediate representation of
sentences or phrases.

Encoder reads whole sentence/phrase and computes
hidden representation .

Decoder uses the fixed-length representation to
decode translated sentence.

Representation idea similar to (single) language
models such as Word2Vec, i.e. word embedding.

Encoder and decoder generally Recurrent NNs with
some kind of memory cells (e.g. LSTM).
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Encoder-Decoder Approaches

s Several similar approaches use this idea.

Cho et al., 2014a: Learning Phrase Representations
using RNN Encoder—Decoder for Statistical Machine
Translation

Sutskever et al.,2014: Sequence to Sequence
Learning with Neural Networks

Cho et al, 2014b: On the Properties of Neural
Machine Translation: Encoder—Decoder Approaches
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La croissance économique a ralenti ces derniéres années

\ Decode /

[21 1224 s ,Zd]
Encode

Economic growth has slowed down in recent years .




Encoder-Decoder Approaches

s Encoder-Decoder approches can be used

to rescore n-best lists of standard phrase-based SMT
models.

(I.e. after other model created a list of n best
translations, ED-model computes likelihood of each
of those translations and reranks hypotheses
accordingly)

» Like using (log-)probabilities of translations / phrases
as feature of linear model

to rescore of phrase pair scores (i.e. phrase
translation probabilities).
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as a standalone (direct) decoding mechanism.




Cho et al., 2014a

= RNN Encoder-Decoder. S
Two RNNs, one for encoding, one for decoding. g
E;T:; ;?_}I’;..~ 'f!'i: %
— ,% g
e 3
@)
X Xz X 8
s Used as part of standard phrase-based SMT

system

Used for (re-)scoring phrase pairs (i.e. P(5|t),
P(s,t), P(t]5) ) from training set.
Learned on phrase pairs




RNNs and LSTM

= Input:

Sequence of word representations.
x» One-hot encodings.
» Word embeddings from pre-trained language model.

s Output:
Softmax layer: word probabilities.
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Recurrent Neural Networks

= |dentical network “unfolded” in time. O
= Units on hidden layer propagate to the right. -
. . . . . -
= Hidden layer activation stores context information. =
3
)
= Output x% ..x%, x% x%.,..x¢ S
\ \ \ :
<

Hidden Hidden Hidden

layers layers layers

s Input  x? .xP; XP XPiq .. X5
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LSTM

= Memory in RNNs

= Input gate scales input to memory.

s Forget gate scales old memory value.
= Output gate scales output.
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iy = 0 (Waize + Wiy + Weiei 1 + 1)
fi=0(Wesxy +Whshi—1 + Wepei—1 + by)
ct = fici—1 + ip tanh (Weexs + Whehi—1 + be)
0y = 0 (Waory + Wiohy 1 + Weoer +b,)

h; = o; tanh(c;)
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Classification: Softmax Layer

Index k

Index i q

[ { X\

Od%‘ % /
NN

X

2 2.1 2
he =0,x" +6,

78 XX

N DA

91’-\* /\R ”V
S

/'\/
X

] 1
K=ol @%%
hl 91Xo+ 4 \

*
1

= One output unit per class:

d
xk = Usm(hk) =
Zk/e k,
xZ: predicted probability for

class k.
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Choetal., 2014a R\l

s RNN Encoder-Decoder. x % %
Encoder

Two RNNSs, one for encoding, one for decoding.
Uses special memory cells

|:‘g>—/
Fil
hy—="—{h [x

s Used as part of standard phrase-based SMT
system

Used for (re-)scoring phrase pairs (i.e. P(5|t),
P(s,t), P(t]5) ) from training set.
Learned on phrase pairs.
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Cho et al., 2014a

= Worked best in combination with NN language O
model: CSLM. 2
. . . . =
s CSLM used for scoring of partial translations during =
decoding of phrase-based system &
Apparently works better than rescoring/reranking of g
n-best list. [Vaswani,2013] 3
Models de\]-*BL‘EIiest (8_2
Baseline 30.64 | 33.30 =

RNN 31.20 | 33.87

CSLM + RNN 31.48 | 34.64

CSLM + RNN + WP | 31.50 | 34.54

s Learns embedding of phrases. Visualization
possible as in Word2Vec.




Sutskever et al.,2014

2 RNN with LSTM hidden layers.
Input sentence Is read in reverse order.

After <EOS> tag Is read, second RNN starts from
last hidden state hy,.

Models P(¢t; ... tglsy -..s) = [1; P(tilhg, ti—q, -, t1)
N R NN B

[ N B N o N N B o

L

Decoding is done using beam search. Beam size of
2 already very good.

Log-probabilities are used as scores. Log-probs are
normalized with length of decoding.
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Sutskever et al.,2014

s Evaluated for both direct decoding as well as
rescoring of 1000-best sentences

1000-best lists of baseline phrase-based SMT model.
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Method test BLEU score (nistld)

Bahdanau et al. [Z] 845

Baschne System [29] 33130

Single foreard LSTM, beam sze 17 2617
single mversed L3 TM, beam se 12 054
Ensemble of 5 mversed LSTMs, beam sze 1 J3.00
Ensemble of 2 reversed LSTMs, beam size T2 33
Ensemble of 5 mversed L3TMs, beam size 7 50
Ensemble of 3 reversed LSTMs, beam sze T2 HEl

Table 1: The performance of the LSTM on WMT' 14 English to French test set (ntst14). Note that

an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12
Method test BLEL score (mistl4)

Baseline System [20] 3330
Choet al. [3] 3454
State of the ari [0] ki)
Kesconng the baseline T-best with a single forward [LSTM 3561
Resconng the baseline 1000-best with a single reversed LTHM 33,83
Resconng the baseline TI00-best with an ensemble of 3 reversed [STMs J6.5
Oracle Resconng of the Baseline 1000-best lists il S

Tabke 2: Methods that use neural networks together with an SMT system on the WMT' 14 English
to French st set (nistl4).




Sutskever et al.,2014

= Visualization of phrase embedding.
2-D PCA projection of LSTM hidden states.
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n 2 | was given a card by her in the garden
3t »Mary admires John ior 3 In the garden , she gave me a card
2 She gave me a card in the garden
2r Mary is in love with John
st
1 3
ot Mary respects John it
1Johin admires Mary
-1t
el  She was given a card by me in the garden
-2r Crdohn is in lowve with Mary 9 In the garden 1 aave her 2 card
- o gV = =
-3r -0}
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-t John respects Ma ry 4 | gawe her a card in the garcen
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Bahdanau et.al. 2015

= Neural Machine Translation by Jointly Learning to
Align and Translate.
= Encoder realized as bidirectional RNN (No LSTM).

Bidirectional RNN: Two sets of hidden states, one for
each direction.

= An alignment is learned simultaneously with
encoder and decoder.

= Instead of only using the last state hidden state for
conditioning the decoder on, all hidden states are
used for decoding.

Alignment (soft-)assigns hidden states to outputs.
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Encoder-Decoder Approaches

s Other Encoder-Decoder approaches use different
encoder structure and/or other decoders, that is,
other neural language (generation) models.

= Cho et al., 2014b showed that direct decoding for
long sentences is problematic
However, emprirical evaluation in Sutskever et al.,

2014 suggests that they did not exhibit such a
behavior.
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Resources for Machine Translation

m Several resources for MT are available online.
http://www.statmt.org/
Moses. Translation tool. http://www.statmt.org/moses

Workshop/Conference on Statistical Machine
Translation.

x E.g. http://lwww.statmt.org/wmt16/
x Several data sets, useful scripts, baseline models.

» Each year, a translation competition is held as part of
the workshop.
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http://www.statmt.org/
http://www.statmt.org/moses
http://www.statmt.org/moses
http://www.statmt.org/wmt16/

m http://matrix.statmt.org/ : lists results for several
translation tasks. L ———
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http://matrix.statmt.org/
http://matrix.statmt.org/

Tricks

s Cho:

Do not use frequency of phrase pairs for learning NN
models. (Use each phrase pair just once.).
Probabilities of phrase tables are used in linear
model, which use relative frequencies. NN score only
additional model.
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Summary

= Learn Machine Translation models from parallel
corpora.

s For classical statistical MT models, first step of
learning generally involves computing word
alignment.

s Phrase-based methods learn phrase-to-phrase
translations.

For training, generate phrase pairs from word
alignments.
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Summary

= Syntax information can be incorporated into MT
models.

Hierarchical phrase translation algorithms generate
synchronous syntax rule without linguistic meaning.

String-to-tree (or similar) models use linguistic
knowledge on target side.

= Evaluation of MT models problematic.
BLEU score widely used (de-facto standard)
But does not necessarily match human judgement.

= Neural translation models show very promising
results.

Encoder-Decoder approaches.
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Automatic Description Generation from
Images

s Goal: Automatically generate descriptions for
previously unknown images and videos.
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there is a cat a plate with a fork a black and white zny:un:r:izy ls:tandmg :nvéoco:aei:st:?rfn ed
sitting on a shelf . and a piece of cake , photo of a window , p 9 : 9
next to cars . in a room,

©

N - <2 : - ‘.‘;‘1
a kitchen with this is a herd a car is parked

a ferry boat on a little boy with
stainless steel of cattle out in the middle a marina with a a bunch of friends
appliances . in the field . of nowhere . group of people . on the street ,

the two birds are a woman and

a giraffe is standing Ked hil :
next to a fence trying to be seen @ parkec car while are trying to ride a bottle of wine
ying

the handlebars

in a field.; in the water , driving down the road . pive rack . in a garden ,
(hallucination) {counting) {contradiction) (nonsensical) {gender)




Automatic Description Generation

= Learn model that learns to generate image
descriptions from training data consisting of image-
description pairs.

= Verbalize visual and conceptual information
depicted in the image, I.e. descriptions that refer to
the depicted entities, their attributes and relations,
and the actions they are involved In.
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Automatic Description Generation

= EXisting literature can be categorized into different
modeling approaches.

Direct generation models: First detect image content
and generate description based on image features

Retrieval based models: Image description
generation as retrieval problem.

x FInd most similar image in database, use same
description.

x Synthesize new description out of descriptions of
similar images.
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Automatic Description Generation

= We only present neural network models because of
the apparent similarity to machine translation tasks.

= T0 be more precise, we present encoder-decoder
approaches for image description generation.

= Idea: Consider image as text in source language
and translate it into text in description language.
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Automatic Description Generation

= General approach:

Learn hidden representation of images (encoder)
and, based on the representation, generate
description using some neural language model
conditioned on the representation (decoder).

Multimodal space SC-NLM Decoder

i Steam  ship at the dock |

CNN - LSTM Encoder

..........................................
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+ structure

Kiros et al, 2015




Automatic Description Generation

= Main principal difference is that the encoder is e.qg.
a convolutional network on image data.

= Output generation is then conditioned on the hidden
representation of the image encoder.

= As for machine translation, several decoder
architectures are possible.
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